

TCS DSA Previous Year Questions

Easy

- Write the code for this: Find if a number is prime.
 (Decide whether a given integer greater than 1 has any divisors other than 1 and itself.)
- Write the code for this: Swap two numbers without using a third variable.
 - (Swap the values of two variables using only arithmetic or bitwise operations, no extra storage.)
- Write the code for this: Find the sum of all elements in an array.
 (Compute the total sum of every number in the given array.)
- Write the code for this: Count the occurrences of a character in a string.
 - (Given a string and a character, count how many times that character appears.)
- Write the code for this: Remove all white spaces from a string.
 (Return the string with spaces, tabs, and other whitespace characters removed.)
- Write the code for this: Sort an array using bubble sort.
 (Implement the bubble sort algorithm to sort an array in ascending order.)
- Write the code for this: Find the common elements between two arrays.
 - (Return the elements that appear in both arrays.)
- Write the code for this: Implement a linear search algorithm.
 (Search for a value by scanning each element until found or the end is reached.)
- Write the code for this: Implement a binary search algorithm on a sorted array.
 - (Efficiently locate a target value in a sorted array using divide-and-conquer.)

- Write the code for this: Check if a linked list is a palindrome.
 (Determine whether the sequence of node values reads the same forward and backward.)
- Write the code for this: Insert a node at the beginning of a linked list. (Given the head of a list and a value, add a new node as the new head.)
- Write the code for this: Delete a node from a linked list given a key.
 (Remove the first node whose value equals the given key and return the new head.)
- Write the code for this: Find the sum of digits of a number.
 (Compute the sum of all decimal digits of the given non-negative integer.)
- Write the code for this: Print the Fibonacci series up to N terms.
 (Generate the first N numbers of the Fibonacci sequence.)
- Write the code for this: Check for an Armstrong number.
 (Determine whether a number equals the sum of its digits each raised to the number of digits.)
- Write the code for this: Find the frequency of each element in an array.
 - (Count how many times each distinct value appears in the array.)
- Write the code for this: Reverse the words in a given sentence.
 (Given a sentence, return a string with the word order reversed.)
- Write the code for this: Find the diameter of a binary tree.
 (Return the length (number of nodes or edges, specify) of the longest path between any two nodes.)
- Write the code for this: Perform in-order, pre-order, and post-order traversals of a binary tree.
 (Implement recursive or iterative traversals that visit nodes in the three standard orders.)
- Write the code for this: Check if two trees are identical.
 (Decide whether two binary trees have the same structure and node values.)

Medium

- Write the code for this: Find the leader elements in an array (elements greater than all elements to their right).
 (Return elements that are strictly greater than every element to their right.)
- Write the code for this: Rearrange an array in alternating positive and negative items.
 - (Reorder elements so they alternate sign: positive, negative, positive, ..., preserving relative order if required.)
- Write the code for this: Find the equilibrium index of an array.
 (Return an index where the sum of elements to its left equals the sum to its right.)
- Write the code for this: Find the majority element in an array (appears more than N/2 times).
 - (Return the element that occurs more than half the time, if any.)
- Write the code for this: Find the stock buy and sell problem to maximize profit (one transaction).
 (Given daily prices, find the max profit achievable by one buy and one sell.)
- Write the code for this: Find the starting point of the loop in a cyclic linked list.
 - (Given a linked list with a cycle, return the node where the cycle begins.)
- Write the code for this: Rotate a linked list by K nodes.
 (Move the last k nodes to the front (or rotate right by k) and return the new head.)
- Write the code for this: Flatten a multilevel linked list.
 (Convert a list where nodes may have child lists into a single-level linked list in order.)

- Write the code for this: Print the left view of a binary tree.
 (Return the nodes visible when the tree is viewed from the left side—one per level.)
- Write the code for this: Convert a binary tree to its mirror tree.
 (Transform the tree so left and right children are swapped at every node.)
- Write the code for this: Find the minimum element in a rotated sorted array.
 - (Given a sorted array rotated at some pivot, find its minimum value.)
- Write the code for this: Implement a queue using two stacks.
 (Use two stacks to simulate enqueue and dequeue operations of a FIFO queue.)
- Write the code for this: Find all permutations of a string.
 (Generate every ordering (permutation) of the string's characters.)
- Write the code for this: Find if there is a path between two vertices in a graph (using BFS or DFS).
 (Return true if you can reach vertex B from vertex A following edges.)
- Write the code for this: Find the minimum number of coins required to make a given value (Coin Change problem).
 (Given coin denominations and an amount, return the minimum coin count to make that amount.)
- Write the code for this: Find the longest common prefix among an array of strings.
 (Return the longest starting substring common to all strings.)
- Write the code for this: Group anagrams together from a list of words. (Partition words into groups where each group's words are anagrams of each other.)
- Write the code for this: Implement an algorithm to print all valid combinations of n-pairs of parentheses.
 (Generate all well-formed parentheses strings that use n opening and n closing brackets.)
- Write the code for this: Find the number of ways to reach the top of a staircase (climbing stairs problem).
 (Count distinct sequences of 1- or 2-step moves to reach stair N.)

Write the code for this: Check if a graph is bipartite.
 (Determine whether vertices can be colored using two colors so no edge has same-color ends.)

Hard

- Write the code for this: Find the largest subarray with a sum of 0. (Return the longest contiguous subarray whose elements sum to zero.)
- Write the code for this: Solve the 0/1 Knapsack problem using dynamic programming.
 (Given item weights and values and capacity W, maximize value by choosing items without splitting.)
- Write the code for this: Find the maximum path sum from any node to any node in a binary tree.
 (Return the largest sum obtainable by any path in the tree (path may start and end anywhere).)
- Write the code for this: Find the length of the longest increasing subsequence.
 (Return the size of the largest strictly increasing subsequence in the array.)
- Write the code for this: Implement a trie (prefix tree) and its insert and search operations.
 (Build a prefix tree supporting insertion of words, full-word search, and prefix search.)
- Write the code for this: Find all possible palindromic partitions of a string.
 (Partition the string into substrings so every substring is a palindrome; return all such partitions.)
- Write the code for this: Find the minimum number of jumps to reach the end of an array.

- (Given an array where each element is max jump length, return the minimum jumps to reach last index.)
- Write the code for this: Connect nodes at the same level in a binary tree.
 - (Set each node's next pointer to its immediate neighbor to the right on the same level.)
- Write the code for this: Find the longest consecutive sequence in an unsorted array.
 - (Return the length of the longest run of consecutive integers, order-agnostic.)
- Write the code for this: Solve Sudoku using backtracking.
 (Fill the 9×9 board so every row, column, and 3×3 box contains digits 1–9.)
- Write the code for this: Find the celebrity in a party.
 (Given a matrix of "knows" relations, find the person everyone knows but who knows no one.)
- Write the code for this: Design a data structure that supports insert, delete, and getRandom in O(1) time.
 (Implement a structure that can add and remove values and return a random element, all in average constant time.)